Multi-Task Metric Learning on Network Data

نویسندگان

  • Chen Fang
  • Daniel N. Rockmore
چکیده

Multi-task learning (MTL) has been shown to improve prediction performance in a number of different contexts by learning models jointly on multiple different, but related tasks. Network data, which are a priori data with a rich relational structure, provide an important context for applying MTL. In particular, the explicit relational structure implies that network data is not i.i.d. data. Network data also often comes with significant metadata (i.e., attributes) associated with each entity (node). Moreover, due to the diversity and variation in network data (e.g., multi-relational links or multi-category entities), various tasks can be performed and often a rich correlation exists between them. Learning algorithms should exploit all of these additional sources of information for better performance. In this work we take a metric-learning point of view for the MTL problem in the network context. Our approach builds on structure preserving metric learning (SPML) [3]. In particular SPML learns a Mahalanobis distance metric for node attributes using network structure as supervision, so that the learned distance function encodes the structure and can be used to predict link patterns from attributes. In the fundamental paper [3] SPML is described for single-task learning on single network. Herein, we propose a multi-task version of SPML, abbreviated as MT-SPML, which is able to learn across multiple related tasks on multiple networks via shared intermediate parametrization. MT-SPML learns a specific metric for each task and a common metric for all tasks. The task correlation is carried through the common metric and the individual metrics encode task specific information. When combined together, they are structure-preserving with respect to individual tasks. MT-SPML works on general networks, thus is suitable for a wide variety of problems. In experiments, we challenge MT-SPML with two common real-word applications: citation prediction for Wikipedia articles and social circle prediction in Google+. Our results show that MT-SPML achieves significant improvement over other competing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Multi-Task Low-Rank Metric Learning Based on Common Subspace

Multi-task learning, referring to the joint training of multiple problems, can usually lead to better performance by exploiting the shared information across all the problems. On the other hand, metric learning, an important research topic, is however often studied in the traditional single task setting. Targeting this problem, in this paper, we propose a novel multi-task metric learning framew...

متن کامل

Exploiting Task Relatedness for Multitask Learning of Bayesian Network Structures

We address the problem of learning Bayesian networks for a collection of unsupervised tasks when limited data is available and a metric of the relatedness of tasks is given. We exploit this valuable information about taskrelatedness to learn more robust structures for each task than those learned with a standard multitask learning algorithm. Our approach is the first network structure learning ...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

A review on multi-task metric learning

Distance metric plays an important role in machine learning which is crucial to the performance of a range of algorithms. Metric learning, which refers to learning a proper distance metric for a particular task, has attracted much attention in machine learning. In particular, multi-task learning deals with the scenario where there are multiple related metric learning tasks. By jointly training ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015